LIFE EXPECTANCY AND LIFESPAN EQUALITY: A DYNAMIC LONG RUN RELATIONSHIP

José Manuel Aburto, Ugofilippo Basellini, Søren Kjærgaard & James W. Vaupel

 $23^{\rm rd}$ May 2017

Background:

- ► Life expectancy at birth (e₀) is one of the most widely used measures to summarize population health.
- ► Most countries have improved in this indicator. Record *e*₀ has steadily increased by 2.5 years every decade.
- ► However, it conceals variation in lifespans or lifespan equality.

Background:

- ► Life expectancy at birth (e₀) is one of the most widely used measures to summarize population health.
- ► Most countries have improved in this indicator. Record *e*₀ has steadily increased by 2.5 years every decade.
- However, it conceals variation in lifespans or lifespan equality.
- What is lifespan equality?

Background:

- ► Life expectancy at birth (e₀) is one of the most widely used measures to summarize population health.
- ► Most countries have improved in this indicator. Record *e*₀ has steadily increased by 2.5 years every decade.
- However, it conceals variation in lifespans or lifespan equality.

• What is lifespan equality?

 Dimension that expresses a fundamental difference in survivorship among individuals.

• Background:

- ► Life expectancy at birth (e₀) is one of the most widely used measures to summarize population health.
- ► Most countries have improved in this indicator. Record e₀ has steadily increased by 2.5 years every decade.
- ► However, it conceals variation in lifespans or lifespan equality.

► What is lifespan equality?

- Dimension that expresses a fundamental difference in survivorship among individuals.
- It addresses the growing interest in health inequalities and its linkage with social behavior.

4th HMD Symposium

Aburto et al. 2017

Life Expectancy and Lifespan Equality

Strong association between life expectancy and lifespan equality Life expectancy (e_0) vs lifespan equality (η) Japan Period 2.0 • 1900-1921 1921-1959 1960 onwards 1.5 Lifespan equality 1.0 0.5 Pearson correlation coefficient > .95 0.0 80 20 40 60 Life expectancy 4th HMD Symposium Aburto et al. 2017 Life Expectancy and Lifespan Equality

Non-stationary series

Stochastic properties suggest analyzing both in first differences

Cointegration analysis

Two-dimensional VAR model in its equilibrium correction (VECM) form:

$$\Delta Z_t = \sum_{i=1}^{k-1} \Gamma \Delta Z_{t-i} + \alpha \beta' Z_{t-1} + \mu + \Psi D_t + \epsilon_t$$

where:

- Δ first difference operator
- Z_t vector of stochastic variables, e_0 and η
- D_t vector of deterministic variables (e.g. linear trends) Data comes from **HMD**, over 8 500 lifetables for 44 countries

Lifespan equality measures

Three measures were used:

$$\eta = -\log\left(\frac{-\int_0^\omega \ell(x) \ln \ell(x) \mathrm{d}x}{\int_0^\omega \ell(x) \mathrm{d}x}\right) = -\log\left(\frac{e^{\dagger}}{e_0^o}\right),\qquad(1)$$

 η based on ${\rm Keyfitz'}$ entropy used in Colchero et al 2016.

$$\bar{\ell} = -\log\left(1 - \frac{-\int_0^\omega \ell^2(x) \mathrm{d}x}{\int_0^\omega \ell(x) \mathrm{d}x}\right) = -\log\left(G\right),\tag{2}$$

 $\bar{\ell}$ a variant of the **Gini coefficient**.

$$cv = -\log\left(\frac{\sqrt{\int_0^\omega (x - e_0^o)^2 f(x) \mathrm{d}x}}{\int_0^\omega \ell(x) \mathrm{d}x}\right) = -\log\left(\frac{\sigma}{e_0^o}\right), \quad (3)$$

cv a variant of the coefficient of variation.

Long run relationship [Johansen's trace test]

Speed of adjustment towards long term equilibrium

Include the age dimension Reducing deaths at any age increases e_0 ; for η , it depends whether deaths occur before or after a^i

18

Threshold age a^η

Decomposition method

Model of continuous change: analysis based on the assumption that covariates change continuously along an actual or hypothetical dimension.[Horiuchi et al 2008 Demography; Caswell 2010 Journal of Ecology]

The effect of the *i*-th age group death rate on the change in e_0 and η from period t to t + 1 can be calculated as

$$c_i = \int_{m_i(t)}^{m_i(t+1)} \frac{\partial e_0(t)}{\partial m_i(t)} dm_i(t)$$
(4)

Then we calculated contributions below and above the threshold age to changes in life expectancy and lifespan equality.

Age-specific contributions

Summary and conclusions

- Strong association between changes in e_0 and η .
- ► We found evidence of a long term equilibrium.
- ► Even if in the short term they diverge from each other, there is a correction mechanism that bring them together again.
- To some extent mortality improvements below threshold age are driving the relationship.

Thanks for your attention.

Comments and/or questions?

Normalized $(\eta = 1)$ long run coefficient for e_0

Can we talk about **causality**?

- ► Granger causality → Because e₀ and η cointegrate at least Granger causality exists in one direction.[Caution!]
 - Just a potential causality, does not take into account latent variables.
 - ► Temporal precedence: a cause precedes its effects in time
- Instantaneous causality: test non-zero correlation between error processes of the cause and effect variables.
 In 90% of the cases we reject the H₀ = no instantaneous causality

long run relationship

