CENTENARIAN SURVIVAL: STAGNATING OR IMPROVING?

Jesús-Adrián Álvarez James W. Vaupel

alvarez@sdu.dk

Interdisciplinary Centre on Population Dynamics University of Southern Denmark

Syddansk Universitet

What do we know?

BROKEN LIMITS TO LIFE EXPECTANCY

Oeppen and Vaupel. (2002), Science.

MORTALITY IMPROVEMENTS IN EVOLUTIONARY CONTEXT

THE PLATEAU OF HUMAN MORTALITY IN ITALY

Barbi et. al (2018), Science.

• Null mortality improvements after age 100 in **Sweden** and **Denmark** (Modig et al, 2017; Drefhal, 2016),

- Null mortality improvements after age 100 in **Sweden** and **Denmark** (Modig et al, 2017; Drefhal, 2016),
- Medford et. al (2019) show that **the oldest old (90th percentile)** in Denmark have been getting older while there has been no evidence of any increase in lifespan for Swedes.

What do we want to know?

• Are centenarians living longer?

- Are centenarians living longer?
- Are there mortality improvements after age 100?

- Are centenarians living longer?
- Are there mortality improvements after age 100?
- How does the outstanding survival of **individuals** compare with the observed trends at the **population level**?

individuals / POPULATION

Unobserved Heterogeneity

• We are all going to die... at different ages.

- We are all going to die... at different ages.
- We differ from each other in many **different aspects**: sex, education, socio-economic status, country of birth, physiology, lifestyle behaviours, etc.

- We are all going to die... at different ages.
- We differ from each other in many **different aspects**: sex, education, socio-economic status, country of birth, physiology, lifestyle behaviours, etc.
- There is always something that **we cannot observe**.

- We are all going to die... at different ages.
- We differ from each other in many **different aspects**: sex, education, socio-economic status, country of birth, physiology, lifestyle behaviours, etc.
- There is always something that **we cannot observe**.

Frailty is a concept that comprises all those unobserved features that increase or decrease individual's mortality risk. (Manton et al., 1981)

- We are all going to die... at different ages.
- We differ from each other in many **different aspects**: sex, education, socio-economic status, country of birth, physiology, lifestyle behaviours, etc.
- There is always something that **we cannot observe**.

Frailty is a concept that comprises all those unobserved features that increase or decrease individual's mortality risk. (Manton et al., 1981)

This results in different survival trajectories.

- We are all going to die... at different ages.
- We differ from each other in many **different aspects**: sex, education, socio-economic status, country of birth, physiology, lifestyle behaviours, etc.
- There is always something that **we cannot observe**.

Frailty is a concept that comprises all those unobserved features that increase or decrease individual's mortality risk. (Manton et al., 1981)

This results in different survival trajectories.

At a population level this creates **heterogeneity**.

Data and methods

Raw data from the Human Mortality Database,

Raw data from the Human Mortality Database, 10-year birth cohorts of females born between 1850-1904,

Raw data from the Human Mortality Database, 10-year birth cohorts of females born between 1850-1904, starting at age 80. • Life expectancy at age 100, $\bar{e}(100)$

METHODS - POPULATION MEASURES

- Life expectancy at age 100, $\bar{e}(100)$
- Lifespan variability,

$$\bar{e}_{100}^{\dagger} = \frac{\int_{100}^{\omega} d(x, y) \bar{e}(x, y) dx}{l(100, y)},$$
$$\bar{H} = \frac{\bar{e}_{100}^{\dagger}}{\bar{e}(100)},$$

METHODS - POPULATION MEASURES

- Life expectancy at age 100, $\bar{e}(100)$
- Lifespan variability,

$$\bar{e}_{100}^{\dagger}=\frac{\int_{100}^{\omega}d(x,y)\bar{e}(x,y)dx}{l(100,y)},$$

$$\bar{H}=\frac{\bar{e}_{100}^{\dagger}}{\bar{e}(100)},$$

• Rates of mortality improvement:

$$\bar{\rho}(\mathbf{x},\mathbf{y}) = -\frac{\frac{\partial \bar{\mu}(\mathbf{x},\mathbf{y})}{\partial y}}{\bar{\mu}(\mathbf{x},\mathbf{y})}.$$

Z: random latent variable, *frailty*. $\bar{\mu}(x, t)$: hazard for the entire population, $\mu(x, t)$: hazard for individuals, Z: random latent variable, frailty. $\bar{\mu}(x, t)$: hazard for the entire population, $\mu(x, t)$: hazard for individuals, $\bar{\mu}(x, t)$ follows a **Gamma-Gompertz** (ΓG) distribution:

$$\bar{\mu}(x,t) = \frac{\alpha e^{x}}{1 + (\frac{\alpha \gamma}{\beta})(e^{\beta x} - 1)}.$$
(1)

In a FG setting at age 80:

 $\bar{\mu}(80, t) = \mu(80, t)\bar{z}(80),$

Therefore,

$$\frac{\bar{\rho}(x-80,t)}{\bar{\rho}(80,t)} = \frac{\rho(x-80,t)\bar{s}_c(x-80,t)^{\gamma}}{\rho(80,t)}.$$

Vaupel and Missov. (2014), Demographic Research.

The whole population

LIFE EXPECTANCY AND LIFE DISPARITY AT AGE 100

15

LIFE EXPECTANCY AND LIFE DISPARITY AT AGE 100

1. Lifespans are highly variable,

- 1. Lifespans are highly variable,
- 2. No compression towards a wall of death,

- 1. Lifespans are highly variable,
- 2. No compression towards a wall of death,
- 3. Keyfitz's entropy close to unity: changes in death rates
 - = changes in e_{100} ,

- 1. Lifespans are highly variable,
- 2. No compression towards a wall of death,
- Keyfitz's entropy close to unity: changes in death rates
 changes in e₁₀₀,
- 4. Half of centenarians die before e_{100} and half of them survive to older ages.

RATE OF CHANGE OF \bar{e}_{100}

Individuals vs the whole population

MORTALITY HAZARD AT AGE 100

18

MORTALITY IMPROVEMENTS FOR THE TOTAL POPULATION

MORTALITY IMPROVEMENTS FOR INDIVIDUALS

To sum up

• ē(100) is **increasing** across cohorts (in France and Japan),

- $\bar{e}(100)$ is **increasing** across cohorts (in France and Japan),
- Mortality is **improving**,

- $\bar{e}(100)$ is **increasing** across cohorts (in France and Japan),
- Mortality is improving,
- Lifespans above age 100 are highly heterogeneous,

- ē(100) is **increasing** across cohorts (in France and Japan),
- Mortality is improving,
- Lifespans above age 100 are highly heterogeneous,
- **Heterogeneity** prevents populations from further mortality improvements.

Why?

CENTENARIAN SURVIVAL: STAGNATING OR IMPROVING?

Jesús-Adrián Álvarez James W. Vaupel

alvarez@sdu.dk

Interdisciplinary Centre on Population Dynamics University of Southern Denmark

Syddansk Universitet