How many times have our lives been saved? A reappraisal of the resuscitation approach using HMD data

Vanessa di Lego

Vienna Institute of Demography
HMD Symposium, 13th-15th May, 2019

Vanessa.DiLego@oeaw.ac.at

May 13, 2019

Motivation: Vaupel and Yashin (1986, 1987)

Mortality improvement

Reduce force of mortality:

$$\mu_{(x)}$$

Increase force of lifesaving:

$$\lambda_{(x)}$$

New mortality regime:

• New mortality regime:

$$\mu *_{(\mathsf{x})} = \mu_{(\mathsf{x})} - \lambda_{(\mathsf{x})}$$

Rate of progress:

$$\rho = -d\mu_{(x)}/dt)/\mu_{(x)}$$

Rationale

Let $\mu(x)$ be the force of mortality at age x and I(x) survivorship (radix=1), we know that:

$$I(x) = \exp\left[-\int_0^x \mu(t)dt\right] \tag{1}$$

And that life expectancy is:

$$e(x) = \int_{x}^{\omega} I(t)dt/I(x)$$
 (2)

Suppose in addition that $\mu* \leqslant \mu(x)$, so that two regimes are considered.

Rationale

Figure 1: Life saving process: *i* resuscitations

And now let $l_i(x)$ be the probability that an individual will be alive and in state i at age x. i= the number of times an individuals life has been saved.

Rationale

Figure 2: Life saving process: *i* resuscitations

And now let $l_i(x)$ be the probability that an individual will be alive and in state i at age x. i= the number of times an individuals life has been saved.

A demographic model of lifesaving

This takes us to the "revivorship function"

$$I^*(x) = I(x) + I_1(x) + I_2(x) + \dots$$
 (3)

And that the chances of repeated resuscitation are:

$$I_i(x) = I(x)\Lambda x^i/i!, i = 0, 1, 2, ...$$
 (4)

Where:

$$\Lambda(x) = \int_0^x \lambda(t)dt \tag{5}$$

And it follows from 1 and 15 that:

$$\Lambda(x) = \ln(I^*(x)/I(x)) \tag{6}$$

Decomposing survival and life expectancy

The relationship between survival under the new and old regimes can be established through:

$$I^*(x) = I(x) + I(x) \Lambda(x) + [I(x)\Lambda(x)^2]/2 + \dots + [I(x)\Lambda(x)^i]/i!$$
 (7)

And also decompose the value of life expectancy into:

$$\tau_i = \int_0^\omega I_i(x) dx = \int_0^\omega I(x) \Lambda(x)^i dx / i!. \tag{8}$$

Figure 3: Life table survival (I_x) , by sex, 1851-2016, France

Figure 4: Number of times the resuscitated had their deaths averted, by sex, 1851-2016, France

Table 1: Mortality improvement and number of resuscitated i, females, 1951-2016

		Survivor		Number of Resuscitation				
Age	1	/ *	$I^* - I$	/1	<i>I</i> ₂	13	14	/ ₅ +
10	94573	99586	5013	4885	126	2	0	0
30	92596	99232	6636	6409	222	5	0	0
50	86836	97598	10762	10146	593	23	1	0
70	64186	89181	24995	21110	3471	381	31	2
80	33775	77040	43265	27851	11483	3156	651	124

Table 2: Mortality improvement and life years lived in each resuscitation state *i*, females

	L	ife expe	ctancy	Decomposing improvement			
Regime	ex^*_0 ex_0 $ex^*_0 - ex_0$		$\overline{}_1$	$ au_2$	$ au_{3}$	%diff	
1851-1901	48.86	42.41	6.45	5.93	0.48	0.02	91.99
1901-1951	68.90	48.86	20.04	15.91	3.36	0.61	79.40
1951-2016	85.32	68.90	16.42	11.10	2.98	1.24	67.64

Preliminary results: Denmark

Figure 5: Number of times the resuscitated had their deaths averted, by sex, 1851-2016, Denmark

Preliminary results: Denmark

Table 3: Mortality improvement and life years lived in each resuscitation state *i*, females

	L	ife expe	ctancy	Decomposing improvement				
Regime	ex^*_0 ex_0		$ex^*_0 - ex_0$	$\overline{}_1$	$ au_2$	$ au_3$	%diff	
1851-1901	54.56	46.22	8.34	7.50	0.76	0.06	89.98	
1901-1951	72.15	54.56	17.59	14.81	2.41	0.30	84.21	
1951-2016	82.79	72.15	10.64	7.38	1.81	0.61	73.61	

Discussion

- Averting deaths for the first time plays a major role in progress, but in the past five decades progress seems to be more spread out and the contribution of saving lives more times increases.
- Implications for how mortality improvement translates into life expectancy increase (lifetable, delayed death model or heterogeneity, stretched lifetimes?)
- How does the lifetable save lives? how much does the heterogeneity counts?
- Decomposing entropy
- Cohort life table
- assessing limit ages

Discussion

Figure 6: Resuscitation on the Lexis

Proportion of resuscitated $I_i(x)/I_{(x)}^* = exp[-\Lambda(x)][\Lambda(x)^i/i!]$

		Survivor		Number of Resuscitation				
Age	1	/ *	<i>I</i> * – <i>I</i>	/1	<i>I</i> ₂	13	14	<i>I</i> ₅ +
10	94573	99586	5013	4885	126	2	0	0
30	92596	99232	6636	6409	222	5	0	0
50	86836	97598	10762	10146	593	23	1	0
70	64186	89181	24995	21110	3471	381	31	2
80	33775	77040	43265	27851	11483	3156	651	124

Thank you!

Vanessa.DiLego@oeaw.ac.at

This research is funded by ERC grant n.725187

Levels and Trends of Health Expectancy: Understanding its Measurement and Estimation Sensitivity

